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Conventionally used metals for orthopedic devices made of titanium, stainless steel, 

and Co-Cr alloys are designed to be permanently implanted. However, long-term 

complications arise and a secondary implant removal surgery is often necessary. A 

mismatch in stiffness between the bone and implant results in stress shielding that 

negatively affects bone density. To overcome these problems, magnesium alloys (e.g., 

WE34) are favored due to a lower Young’s modulus (45 GPa) and biodegradability. The 

critical technical barrier with magnesium alloys is their high corrosion rate in physiological 

(salt-based) environments. One solution is to use surface treatments, such as shot peening 

(SP), to induce surface residual stresses and slow the degradation rate. The corrosion rate 

can be customized according to patient specific parameters, such as age and bone health, or 

application (i.e., pelvic fracture vs. spinal fracture) through SP process parameter 

manipulation (e.g., peening pressure). However, the effect of residual stresses from SP on 

stress corrosion behavior of magnesium alloys remains inconclusive. The purpose of this 

study is to evaluate the effect of shot peening with different peening pressures on the stress 

corrosion rate of WE43 using polarization tests. The results for this study indicate that the 

corrosion resistance of the alloy increased as the pressure of shot peening increased and is 

inversely proportional to the applied external load. A relation between the surface integrity 

and the stress-corrosion behavior of the shot peened samples has been found. 
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CHAPTER 1 

 

MAGNESIUM AS A BIOMATERIAL 

 

1.1 Magnesium Alloys as Orthopedic Biomaterials 

 

1.1.1  History of Magnesium for Biomaterials 

 

 The history of metallic magnesium dates back to the 19th century, when Sir 

Humphry Davy first discovered it in elemental form. His assistant, Michael Faraday, 

implemented the electrolysis of fused anhydrous MgCl2 in 1833 [1]. Nearly 45 years later 

(c. 1878), magnesium was first used as an implant material when Edward C. Huse used 

magnesium (Mg) wires as ligatures to successfully stop bleeding vessels in radial arteries 

and in operations of varicocele on three patients. It was observed that Mg wires were not 

ductile enough for biomedical purpose. In 1900, Dr. Erwin Payr experimented on 

different shapes of high-purity thin walled magnesium cylinders as connectors for vessel 

anastomosis [2]. Many scientists later investigated the use of different magnesium alloys 

with different geometries on humans and animals (such as rabbits, pigs); and thus, began 

the expedition of using magnesium alloys as biomaterials.  

 

1.1.2 Problems with Current Permanent Metal Alloys 

 

 Metallic materials are commonly used in orthopedic implant surgeries to repair or 

replace diseased or damaged bone tissue. Due to the combination of excellent mechanical 

strength and fracture toughness, metals are preferred over polymers and ceramics for load 

bearing applications. Currently approved metals for various biomedical purposes include 

titanium (Ti), stainless steel (SS), and cobalt-chromium (Co-Cr) alloys. Some of these 
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metals release metallic ions which can have a long-term chronic effect. Moreover, these 

materials have a higher elastic modulus and stiffness as compared to human bone. As a 

consequence, stress shielding is observed in bones due to the imbalance of these 

properties that leads to reduced stimulation of osteogenesis or decrease in bone density 

with time, thus reducing implant stability [3, 4].  

 Traditionally used metals, such as Ti-, SS-, and Co-Cr alloys, are considered 

bio-inert materials in vivo. Although bio-inert does not truly exist, these materials remain 

permanent fixtures within the body and result in complications requiring another surgery. 

Unfortunately, a secondary implant removal surgery is often required due to permanent 

physical irritation or inflammatory discomfort from permanent implantation. This implant 

surgery increases the cost of healthcare and increases the risk of morbidity for 

patients [5]. 

 

1.1.3 A Biodegradable Alternative – Magnesium 

 

 A biocompatible metal that has similar mechanical properties to human bone is 

required to prevent stress shielding. Magnesium alloys have mechanical and physical 

properties, such as elastic modulus and density, that are more similar to those of natural 

human bone as compared to traditional bio-metals [5] (Table 1).  

Moreover, magnesium alloys have a moderate degradation rate to comply with the 

fracture-healing processes and good non-toxicity of degradation products. In addition, 

magnesium is an essential element of the human body and helps in regeneration of 

natural bone [6, 7]. The human body can accommodate Mg ions released due to 
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degradation of an implant, and the excess ions can be successfully excreted. Hence, 

magnesium alloys are a suitable candidate for implant materials. 

 

Table 1: Physical and mechanical properties of human bone and implant alloys [5] 

Properties Bone Mg  Ti Co-Cr SS  

Density (g/cm3) 1.8-2.1 1.7-2.0 4.4-4.5 8.3-9.2 7.9-8.1 

Elastic modulus (GPa) 3-20 41-45 110-117 230 189-205 

Comp. yield strength (MPa) 130-180 65-100 758-1117 450-1000 170-310 

KIC (MPa‧m1/2) 3-6 15-40 55-115 N/A 50-200 

 

 

 

1.1.4 Corrosion Mechanism of Magnesium – Electrochemistry 

 

 Corrosion is defined as the destruction or deterioration of a material because of 

reaction with its environment under the influence of chemical, physical, and 

electrochemical factors [8]. Corrosion of a metal in the physiological environment is 

more complicated than corrosion in natural scenarios due to the effect of protein and 

changing pH.  

 During corrosion of magnesium (Mg), metallic Mg is converted to a stable Mg+2 

ion in two electrochemical steps [9]. The first step involves conversion of Mg to a uni-

positive Mg+ ion, as an intermediate reaction, equations (1) and (2).  

 Anodic reaction: 

 

Mg      Mg+ + e- 

 

kMg+      kMg2+ + ke-                                                           

(1.1) 

 

(1.2) 

 

where, k = a fraction of uni-positive Mg+ 

 

 Anodic reactions 



4 

 

 

 

These partial reactions are balanced by cathodic partial reactions of hydrogen evolution: 

 

 Cathodic reaction: 

 (1+k)H2O + (1+k)e-       ½(1+k)H2 + (1+k)OH-           (1.3) 

 

As Mg+ can chemically react with water, a fraction of Mg+ reacts electrochemically via 

Eqn. 1.2. The complement of Eqn 1.2 reacts with water as: 

 

 (1- k)Mg+ + (1- k)H2O + (1- k)OH-       (1- k)Mg(OH)2 + ½(1-k)H2             (1.4) 

 

 Overall reaction is given as:  

 Mg + 2H2O         Mg(OH)2 + H2 (1.5) 

 

 Hence, the corrosion of magnesium is only partly electrochemical. The predicted 

corrosion rate by electrochemical measurements is expected to be lower than the real 

corrosion rate (as determined by the hydrogen evolution or the weight loss method) [9]. 

 

1.1.5 Corrosion Mechanism of Magnesium in a Physiological Environment 

 

 Magnesium is oxidized immediately after coming in contact with body fluids to 

form metal cations as seen in equations 1.1 and 1.2. The released electrons are consumed 

by water molecules resulting in a water reduction cathodic reaction (Eqn. 1.3) [9]. These 

reactions happen over the exposed surface of an implant material, where a galvanic cell is 

formed due to potential difference between the metal and its grain boundaries. At the 

same time, organic molecules (such as proteins, amino acids and lipids) get adsorbed on 

the metal surface, thus leading to the dissolution of metal. A corrosion layer of the 
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product formed (magnesium oxide) is accumulated on the surface as shown by Eqn. 1.5. 

As the implantation time increases, cells are observed to adhere and proliferate on the 

metal surface, which leads to a natural tissue formation. The product layer later breaks 

down into several small particles and is further degraded by tissue. 

 

1.1.6 Biosafety and Disposal of Degraded Products 

 

 The local physiological and chemical equilibrium is often disturbed due to the 

generated corrosion products at the implant contact site. The effect of this interaction 

gives rise to metal cations (as indicated in equations 1.1 to 1.5), chemical products (such 

as oxides, hydroxides, phosphates, carbonates from body fluids), local change in pH, and 

release of hydrogen gas (Eqn. 1.5). Magnesium degradation is safe and harmless to the 

body only when the concentration of these products is under a certain range [10]. For 

instance, higher corrosion rate of magnesium alloy can give rise to higher amounts of 

hydrogen gas evolved per interval of time. Gas cavities can be produced in the tissue 

surrounding the implant and can gradually diffuse in the extracellular mediums that keep 

circulating depending on the local blood flow [3]. However, gas cavities were not 

observed in the case of coated magnesium alloys, as they exhibit lower initial corrosion 

rates as compared to bare magnesium alloys.  

 

(a) Precipitate disposal 

 

 The precipitates of metal oxides disintegrated through the degradation process 

show relatively low solubility in body fluids and are difficult to eliminate from the body. 

However, the most common by-product of magnesium degradation is magnesium 
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hydroxide (Mg(OH)2), which reacts with chloride ions from body fluids to form soluble 

magnesium chloride (MgCl2) [11, 12]. 

 

(b) Toxicology 

 

 The released products can induce system toxicity and/or local toxicity to the 

human body. If the alloy degrades too fast, the local pH value can elevate too fast, thus 

causing toxicity in peri-implant cells and local tissues with an increase in the 

inflammatory response. Although magnesium alloys have shown affirmative results in 

terms of biocompatibility on animal models, several flaws such as formation of gas 

cavities (due to rapid degradation of alloys) and severe hemolysis (due to drastic increase 

in pH values) have also been observed [13]. 

 

1.1.7 Corrosion Challenges for Magnesium 

 

 The in vitro tests for Mg are classified into two broad categories: i) corrosion 

resistance and ii) toxicity. In most cases, both categories are related to each other due to 

rapid degradation that can lead to many biological reactions [14]. Hence, the major 

challenge of using magnesium alloys as implants is to decrease their degradation rate in 

physiological conditions. The critical technical obstacle is to understand how to improve 

the corrosion resistance of magnesium. 

 

1.1.8 Methods to Improve Corrosion Resistance of Magnesium 

 

Improving corrosion resistance is essential for manufacturing a favorable implant. 

Different methods to slow corrosion include alloying, coatings, and surface treatments. 
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(a) Alloying 

 

 Alloying elements associated with improving corrosion resistance include:  

i) aluminum (Al) and zirconium (Zr) in ingot alloys and ii) passivating elements such as 

nickel (Ni) and rare earth elements (e.g., yttrium (Y) and neodymium (Nd)) in amorphous 

alloys [15]. The benefits of using these alloying elements include improving the 

protective properties of a surface film. 

 

(b) Coatings 

 

 A coating on magnesium alloys is one of the most popular methods used in order 

to improve corrosion resistance [8]. The coating is required to have sufficient adhesion on 

metal surfaces; resistance to corrosion, wear and fatigue; and high hardness and 

mechanical strength. So far there are no coatings that satisfy all the demands. The 

selection is made based on type of implant or application. Metal coatings (such as 

electroless nickel plating, chromate conversion coating, or aluminum coating) have high 

hardness and good mechanical properties, but they are toxic to the human body. 

However, non-metal coatings (such as thermal spray coating or anodizing) have low 

strength and wear resistance. 

 

(c) Surface Treatments 

 

 Surface treatments such as laser shock peening, shot peening, and roller 

burnishing are used to influence the mechanical properties of the implant material. The 

residual compressive stresses induced by these treatments can improve fatigue life and 
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corrosion resistance. Furthermore, surface treatments are beneficial for tissue growth due 

to surface modification. However, the effect of stress-corrosion and corrosion-fatigue 

behavior of these surface treated alloys is unknown. Hence, it is important to investigate 

the effects of surface treatments for considering their application in orthopedics. 

 

1.1.9 Types of Mechanical Surface Treatments 

 

(a) Laser Shock Peening 

 

 Laser shock peening (LSP) is a non-contacting surface treatment that causes 

plastic deformation of a workpiece via shock pressure wave loading [16]. LSP induces 

compressive residual stresses in the alloy by generating a high strength impact wave. LSP 

improves the mechanical properties to control the implant’s corrosion rate, and provides 

suitable surface for cell attachment on the implant [17]. 

 

(b) Burnishing 

 

 Burnishing is a contacting surface treatment that causes plastic deformation of a 

metal via a hydrodynamic ball that applies a force in rolling/sliding contact [18]. The 

force applied in this type of rolling/sliding contact induces compressive residual stresses 

near the surface of the metal alloy. 

 

(c) Shot Peening 

 

 Shot peening (SP) is a contacting surface treatment where metal/ceramic/glass 

media is shot at high velocity to deform the surface of the metal alloy [18]. The plastic 

deformation by shot peening induces deep compressive residual stresses below the 
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surface. The process of spraying media results in a random distribution of pits that leads 

to increase in surface roughness. 

 

1.1.10 Why Shot Peening? 

 

 While all the above-mentioned surface treatments are beneficial in their own way, 

selection of a surface treatment needs to be done based on the geometry and application 

of the implant. Burnishing gives a smooth surface as compared to SP and LSP, and hence 

it may not create the required surface for the cell attachment. LSP is an expensive 

localized surface treatment.  Shot peening can be applied to large areas economically 

while simultaneously providing a rough surface; thus, SP is well suited for the face of a 

large bone plate. 

 

1.1.11 Cell Behavior on Magnesium Implants 

 

 Most of the currently used commercial orthopedic implants are coated with 

different materials. The cell viability on the surface is difficult to understand if there is a 

crack in the coating or once the coating is degraded. Similarly, it is essential to 

understand the cell behavior on surface treated implants. As magnesium is a degradable 

material, the surface of an implant slowly degrades inside the human body. The residual 

stresses subject to the surface at a given time will be different. Thus, it is essential to 

consider the effect of degrading surface on the cell behavior. 

 At the same time, surface treatments create a unique roughness on the surface an 

alloy. It is difficult to evaluate the cell attachment and proliferation with surface 

roughness as a changing parameter. Ultimately, it is required to find out how residual 
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stresses from a surface treatment affect cell attachment, proliferation, and viability on a 

degrading and rough surface. 

 

1.2 Research Objectives 

 

 Shot peening process has been used to modify the surface integrity of magnesium 

alloy (WE43). The objective of this study is to understand the effect of shot peening on 

the stress corrosion behavior of WE43. The focus of this research is the following: 

(1) measure the surface integrity imparted by the shot peening process; (2) understand 

corrosion behavior of the alloy when the specimen is stressed and unstressed; and (3) find 

a relation between SP process parameters, surface integrity, and the stress-corrosion 

behavior of the alloy. 
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CHAPTER 2 

 

STRESS-CORROSION OF MAGNESIUM ALLOYS 

 

2.1 Magnesium Alloys as Orthopedic Implants 

 

As technology progresses, several materials are considered for implantation 

during an orthopedic surgery. Applications include scaffolds for osteogenesis or fixtures 

for supporting a fractured bone. The material needs to be biocompatible for it to be 

suitable in various surgical applications. Currently, different materials such as stainless 

steel, cobalt-chromium, titanium alloys, and various ceramics and polymers are used to 

serve this purpose. Since these materials are not biodegradable and have high (metals) or 

low (polymers) strength as compared to the human bone, several problems and 

complications arise from long-term implantation that limits their utility [19]. An 

alternative biomaterial that avoids long-term complications since it fully degrades is 

magnesium. Magnesium alloys possess several benefits that make them of interest for 

orthopedic applications. They have mechanical properties similar to that of human bone, 

which helps avoid stress shielding. Also, magnesium corrosion products safely exit the 

body through normal metabolic activity. The biocompatible nature of magnesium and the 

similar properties to bone make it an ideal material for biodegradable implants. 

 

2.1.1  Recent Development of Magnesium Alloys as Orthopedic Implants 

 

Some of the magnesium biomedical device products manufactured currently 

include scaffolds, stents, bone pins and screws. Researchers at the Fraunhofer Institute of 

Laser Technology have developed a selective laser melting process to manufacture 
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complex structures of implants for different materials, including magnesium alloys 

(Figure 2.1(a)) [20]. The biocompatibility of these magnesium implant prototypes has 

been demonstrated in vitro. 

Magnesium Elektron and Biotronik have partnered to develop a cardiovascular 

stent that resorbs over time (Figure 2.1(b)). In 2016, a new product called Magmaris 

magnesium scaffold was launched and it is the world’s first clinically approved 

magnesium-based resorbable scaffold to obtain a CE mark [21]. 

Syntellix (Hannover, Germany) developed a MAGNEZIX compression screw and 

demonstrated good biocompatibility and osteoconductive quality in vivo. MAGNEZIX is 

an aluminum-free magnesium alloy and belongs to MgYREZr alloy group, that is similar 

to WE43 (Figure 2.1(d)) [22]. 

U&I Corporation (South Korea) manufactures headless and cortex screws, and 

K-wires with Mg-Ca alloy that completely degrade in 6 to 18 months depending on 

implant application. U&I’s alloy has proven biocompatibility (ISO 10993) and produces 

no stress shielding [23]. 

nanoMAG produces several innovative devices including bioabsorbable devices 

(orthopedic fixation devices for spine, hip, and femur trauma) and biomedical external 

devices (light weight knee, foot, and elbow braces) made of magnesium. They have 

proved biocompatibility in vivo (Figure 2.1(c)) [24]. 
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Fig. 2.1: (a) Scaffold with defined pore structure made from WE43 (Fraunhofer, Aachen), 

(b) stent created by Biotronik using magnesium alloy, (c) fracture fixation 

magnesium plates and screws developed by nanoMAG, (d) bone screws and pins 

made of magnesium alloys and developed and manufactured by Syntellix.  

 

 

2.1.2 Competition with Biodegradable Polymers and Permanent Metallic 

Materials 

 

There are many biodegradable polymers such as LPLA, DLPLA, PGA and PCL 

that have been approved by the FDA. These polymers are used in fracture fixation surgeries 

as pins, plates, interference screws, suture anchors, etc. Polymeric devices are vastly used 

in low to mild load bearing applications. However, biodegradable metals like magnesium 

are viewed as the promising alternatives to polymeric devices in hard tissue repair.  

In comparison with permanent metal materials such as Ti, Co-Cr, and stainless 

steel alloys, biodegradable metals have shown encouraging results in hard and soft tissue 

(b) 
(a) 

(c) (d) 
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applications. Improving the mechanical properties and better predicting the degradation 

behavior will broaden the use of biodegradable metals in orthopedic applications. 

Overall, the competition of biodegradable alloys with permanent metal alloys and 

polymer devices is relatively low at this stage of development. It is predicted that the 

competition will be relatively higher in future years with progress in research [25]. 

 

2.1.3 Corrosion of Magnesium Alloys 

 

Magnesium is a highly active metal and is prone to corrosion in slightly alkaline 

solutions. The Pourbaix diagram of magnesium in water at 25°C is shown in Figure 2.2. 

The regions of corrosion, passivation, and immunity according to their pH are indicated 

in the diagram. The diagram indicates that magnesium is passive in highly alkaline 

solutions, i.e., with a pH of 12 or higher. The pH of human body remains in the range of 

7 to 8.4. Thus, for corrosion testing of magnesium for biomedical applications, the pH is 

maintained in the same range to make sure that magnesium does not enter passivation 

mode. The corrosion reactions of magnesium have been explained in Chapter 1, 

Section 1.1.3. 

 

2.1.4 Corrosion Rate of Magnesium 

 

The major challenge for magnesium implants is high corrosion or degradation 

rate.  Rapid corrosion of magnesium affects the mechanical stability of the implant. The 

corrosion products can accumulate in the body and can lead to rapid pH change of the 

body. To avoid these drawbacks, it is important to control the corrosion rate of 

magnesium. 

file:///F:/(A)%20Research/(A)%20Students/(A)%20Active%20Students/Tejaswita%20Patil%20(Mg%20Corrosion)/Thesis/Ch1_Introduction.docx
file:///F:/(A)%20Research/(A)%20Students/(A)%20Active%20Students/Tejaswita%20Patil%20(Mg%20Corrosion)/Thesis/Ch1_Introduction.docx
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Fig. 2.2 Pourbaix diagram of magnesium in water at 25°C. 

 

 

2.1.5 Influencing Corrosion Behavior of Biodegradable Magnesium 

 

(a) Alloying 

 

 The degradation rate of pure magnesium is extremely high and needs to be 

controlled in order to avoid the harmful effects to the human body. Alloying is a good 

solution to improve corrosion resistance of high purity magnesium. Alloying elements in 

their pure form or intermetallic phase are used to make magnesium more noble. Alloying 

elements such as aluminum, manganese, calcium, lithium, rare earth elements are 

currently used to control the degradation rate [26].  

From a biocompatibility point of view, there are not many elements suitable for 

alloying magnesium. Each element associated with magnesium alloying comes with its 

own advantages and disadvantages. Aluminum (Al) can provide strength to the implant, 

but Al ions can react with inorganic phosphates thus inducing dementia in the human 
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body. Rare earth elements (such as Ce, La, Nd, and Pr) are used to improve hardness of 

the alloy, but some of those elements (Pr, Ce, and Lu) can exhibit toxicity to the body. 

Zirconium is used as a grain refiner and to avoid aluminum in the alloy. It has been found 

that liver, lung, and breast cancer are closely related with presence of zirconium [27]. 

 

(b) Coatings 

 

A suitable corrosion resistant coating can delay the initiation of degradation of 

magnesium. A delay in degradation is required as the implant needs to function properly 

for a certain duration after the surgery and before the tissue starts to heal. The coating 

should also be wear resistant, as it should not get damaged during implantation. A non-

toxic anodized coating, similar to a ceramic was produced and tested in a lab [27]. 

Results indicated there was no hydrogen evolution in the physiological solution for a 

month. Thus, anodized coating successfully delayed the biodegradation of commercial 

purity magnesium (CP-Mg). 

If the coating breaks down, the anodized coating is non-toxic and silicon oxides 

from the coating dissolve into the body fluids. The degradation of magnesium starts 

occurring at the break-down area. Thus, the coverage and thickness of coating can be 

varied according to the preferred degradation area and degradation rate can be controlled 

accordingly [27]. 

 

(c) Surface Treatments 

 

Low fatigue strength and low corrosion resistance are some of the factors that 

negatively influence the ease of using magnesium as orthopedic implants. Mechanical 
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surface treatments such as shot-peening, roller-burnishing, laser shock peening, and deep-

rolling are performed on magnesium alloys to improve corrosion and fatigue performance 

[28]. 

Laser shock peening (LSP) is a surface treatment method to impart high 

compressive residual stresses in magnesium alloys. Effect of LSP on corrosion resistance 

of Mg-Ca alloy was studied by Sealy et al. [29, 30]. The references [17, 31, 32] discuss 

the effect of high-repetition rate laser shock peening on biodegradable magnesium. 

Shot peening has been initiated and its effect on corrosion resistance of 

magnesium alloys such as AZ80, AE21 and AZ31 has been discussed in [33-35].  Ultra-

fine burnishing is used to control corrosion rate of Mg-Al-Zn alloy [36] and AZ31 alloy 

[37]. Effect of other surface treatments such as plasma vapor deposition (PVD) on 

corrosion resistance of magnesium alloys have been studied [38, 39]. Figure 2.3 indicates 

the list of all treatments/modifications that can be done to improve corrosion resistance of 

magnesium. 

 

2.2 Stress Corrosion Cracking  

 

Stress corrosion cracking (SCC) is a dangerous and complicated form of 

corrosion that involves a three-way interaction: (i) mechanical loading, (ii) a susceptible 

environment, and (iii) a corrosive environment [41]. 
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Fig. 2.3 Methods to influence corrosion behavior [40]. 
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2.2.1 SCC Mechanism 

 

An increase in the chemical activity is observed when an electrochemical 

potential difference is formed between stressed and unstressed parts of a metal. Such kind 

of stress-initiated corrosion mechanism usually accelerates the corrosion rate by two to 

three times the normal uniform rate. This results in formation of small cracks that 

concentrate stress within the loaded implant. Stress corrosion cracking can occur in any 

stress loaded implant immersed in aqueous solution of body fluids. The cracks generated 

by SCC extend rapidly and grow in between grain boundaries of the stress affected 

region. The crack speed is dependent on the strain rate from implant loading cycle and 

the presence of hydrogen gas produced by corrosion reaction [40]. 

 

2.2.2 Metallurgical Effects 

 

Magnesium alloys show poor corrosion resistance, even in dilute electrolyte 

solutions. Detection of stress corrosion cracking is difficult, although significant 

microstructure changes occur. Studies have been done to identify the effect of stress 

corrosion cracking on the microstructure of magnesium by different methods. 

Investigation of stress corrosion cracking in WE43 magnesium alloy has been done by 

using quantitative fractography methods [42]. A strain rate of 9.10-7 s-1 was applied to 

cylindrical samples of 5 mm diameter and 20 mm length, along with corrosive 

environment exposure for 73 hours. Many SEM images were merged together to form a 

high-resolution fracture micrograph after exposure. The micrograph was then provided as 

an input to quantitative fractography. A manual detection using the GIMP software gave 

the following results (Figure 2.4): 
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Fig. 2.4 Detection of cracks due to SCC of WE43 [42]. 

 

 

 

2.2.3 Electrochemical Effects 

 

Various experiments have been conducted to determine the effect of stress 

corrosion on the electrochemical properties of magnesium alloys. A study by Yu et al. 

[43] reported the results at low strain rates. Stress corrosion cracking of Mg-Zn-In-Sn 

alloy in 3.5% NaCl solution at 25°C was observed under an optical microscope. The 

electrochemical measurements of open circuit potential (OCP) and loop circuit (LC) were 

taken with a potentiostat. It was observed that the stability of OCP was improved with 

increase in stress (in elastic region). At the same time, the LC values of alloy improved 

with increase in stress in elastic zone. The effect of SCC on the electrochemical 

properties of Mg-Zn-Y-Zr alloy was also reported by Wang et al. [44]. 
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2.2.4 Methods of Prevention of Stress Corrosion Cracking 

 

The prevention of SCC depends on several different factors. The general principle 

to prevent SCC is to avoid loading the alloy above the critical stress while exposed to 

corrosive environment. However, it is difficult to stay within the limits of critical stress in 

applications such as biomedicine. There are a few guidelines to follow when it comes to 

engineering materials that are subjected to stress and corrosion at the same time [41]. 

• Conception and design: Engineering a part such that there is less concentration 

of stresses at the start, during the use, or through increasing susceptibility to 

degradation. Avoiding complex geometrical aspects to the part can prevent SCC 

• Service environment: Keeping dry atmosphere with the relative humidity less 

than 95% can lower the risks of stress corrosion cracking 

• Alloy selection: Selecting an appropriate alloy + environment combination for a 

particular application helps avoid SCC 

• Service loading: The total stress during use (service stress + fabrication stress + 

residual stress) should be lower than the threshold stress (50% of yield stress) 

 

2.2.5 Mechanisms of Stress Corrosion Cracking 

 

Numerous mechanisms of stress corrosion cracking have been proposed through 

an extensive experimental investigation and theoretical analysis. Mechanisms that have 

received greatest attention have been discussed briefly in the following sections. 
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(a) Hydrogen Embrittlement 

 

Hydrogen induced cracking, a mechanism that has brittle cleavage-like features, 

accounts for stress corrosion cracking. The interatomic bonds of the material are 

weakened by hydrogen atoms in the plane strain region at the crack tip (Figure 2.5(a)). 

The result is a singular crack with branching.  

 

(b) Adsorption Induced Cleavage 

 

The critical anions from the solution are adsorbed during the electrochemical 

process. The metal bonds at the crack tip are weakened by these anions and a crack is 

initiated (Figure 2.5(b)). The crack grows until it is blunted by plastic deformation or 

grows out of the adsorbed region. 

 

(c) Atomic Surface Mobility 

 

In atomic surface mobility mechanism, the crack grows by the capture of surface 

vacancies at the crack tip and counter-current surface diffusion of atoms away from the 

crack tip (Figure 2.5(c)). There is not a lot of support for this mechanism at present. 

 

(d) Film Rupture 

 

Film rupture or slip-step dissolution is one of the first proposed SCC mechanisms 

and still receives considerable support. Tensile stress produces strain to rupture the 

surface film at an emerging slip band [45]. A crack grows at the rupture site by anodic 

dissolution of the bare surface (Figure 2.5(d)). The crack grows until the crack tip can re-

passivate or grow until failure. 
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(e) Film-Induced Cleavage 

 

Brittle films are present on the surface of several metals. This mechanism 

postulates that a crack growing in the surface film may propagate further into underlying 

metals if it reaches sufficient velocity at the interface (Figure 2.5(e)). Corrosion is 

necessary to form surface films, and not propagate cracks. Reformation of surface film is 

required at the crack tip surface before a new crack is formed.  

 

(f) Localized Surface Plasticity 

 

 This mechanism proposes that stress corrosion cracking results from a defect 

structure ahead of the crack tip that produces plasticity (Figure 2.5(f)). This could result in 

formation of localized critical corrosion effect.  

 

2.3 Stress Corrosion Cracking of Magnesium for Biodegradable Implants 

 

2.3.1 How does SCC relate to Biodegradable Implants? 

 

A biodegradable implant is subjected to many tensile and compressive stresses 

arising from different activities (such as lifting objects, walking, etc.) in a human body. It 

is also exposed to body fluids to begin the degradation process. Thus, the conditions 

required for initiation of SCC such as susceptible metal alloy (biodegradable implant), 

corrosive environment (body fluids), and application of stress (through various 

movements of the body part) are fulfilled. It is required to study and understand the stress 

corrosion behavior of the material to develop a favorable orthopedic implant. 
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Fig. 2.5  Mechanisms of stress corrosion cracking growth: (a) hydrogen embrittlement, 

(b) absorption induced cleavage, (c) surface mobility, (d) film rupture, (e) film 

induced cleavage, and (f) localized surface plasticity [45]. 

 

 

2.3.2 Stress-Corrosion Environment In-Vivo 

 

A biomedical implant is often subjected to stresses depending on the human body 

part where the implantation is done. For example, a femur plate can experience 3 to 4 

times a patient’s body weight after implantation. Due to these stresses, and by the 

principles of SCC, the implant degrades rapidly. Moreover, the human body fluids are 

salt-based solutions that accelerate corrosion. Hence, the composition of body fluids 

account for stress corrosion cracking behavior. Magnesium alloys have been tested 

in vivo [4]. Various alloys such as AZ31, AZ91, WE43 have been tested on animal 

models using ISO standards. Different problems related to these alloys have been 

discussed in [4]. 

(a) (b) 

(c) (d) 

(e) (f) 

Brittle crack 

Propagation 

Brittle crack 
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2.3.3 Effect of Magnesium Metallurgy on SCC 

 

(a) Microstructure 

 

The effect of microstructure on SCC of Mg-Al-Zn alloys has been observed in 

[46]. Results indicate that a large size and spacing of grain boundary precipitates decrease 

the degradation rate. The effect of microstructure on SCC behavior of Mg-xSn alloys was 

observed in [47]. The morphology changed from spherical to a semi-continuous network 

as the concentration of added Sn was increased from 2% to 8%. Higher concentration of 

Sn diminished the SCC resistance. These studies indicate microstructure plays an 

important role in the SCC behavior and is highly dependent on the alloy composition. 

 

(b) Alloying 

 

The SCC susceptibility for alloys with different element combinations is different. 

The SCC tendency of some common magnesium alloys is given in (Table 2 of [41]). The 

SCC resistance to different environment combinations is given in (Table 3 of [41]). The 

measure of SCC susceptibility is SCC threshold, KISCC or σSCC. For example, SCC 

susceptibility was reported to increase by 6% with addition of aluminum. Addition of Nd, 

Zr, Pb, Cu, and Ni had little or no influence on SCC [41].  

 

2.3.4 Gaps in the Literature 

 

 Although it is hypothesized that coatings and surface treatments affect SCC of 

magnesium alloys, there was no literature explicitly investigating these topics and is a 

prime motivation for the proposed study. Surface treatments are of particular interest for 

this work. Surface treatments are well known to impart favorable surface integrity’s that 
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affect corrosion behavior. The primary mechanism believed to influence SCC is localized 

surface plasticity. This work is an initial study in the field and will help identify shot 

peening’s influence on SCC. 

 

2.3.5 Methods to Measure Stress Corrosion Cracking 

 

 The following three parameters are considered to characterize SCC: 

• threshold stress, σSCC  

• threshold stress intensity factor, KISCC  

• steady stress corrosion crack velocity, V 

There is no general approach to predict SCC based on micromechanics and physical 

metallurgy. Stress corrosion cracks are macroscopically brittle, although local plasticity is 

required for the crack to proceed. Hence, linear elastic fracture mechanics (LEFM) is 

used to measure SCC. The stress intensity factor (KI) at the crack tip is given by: 

 

 𝐾𝐼 = Yσ√𝜋𝑎 (2.1) 

 

where Y is a geometric factor, σ is applied stress, and a is crack length. The effect of the 

KI on crack velocity varies for different alloys in different environments. A detailed list 

of different alloys and their crack velocities has been mentioned in [41]. 

 

2.4 Modeling Stress Corrosion Cracking using Peridynamics 

 

2.4.1 Introduction to Peridynamics: 

 

Peridynamics, a reformulation of the classical continuum mechanics, allows for a 

natural treatment of discontinuities in materials by employing the concept of nonlocal 
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interactions [48]. This method can be used to simulate several complicated problems. 

According to continuum mechanics, a material point can interact with material points that 

lie in its direct contact, or nearest neighborhood (Figure 2.6) While classical continuum 

mechanics has been used to solve various problems in engineering, it cannot be used for 

parts with discontinuities. The governing equations in continuum mechanics are partial 

differential equations. When a discontinuity like a crack or geometrical part void is 

observed, the spatial derivatives are not defined and the solution attains singularity [49]. 

To overcome this drawback, a non-local continuum mechanics formulation was 

introduced by Silling [50] such that all the discrepancies for modeling objects with 

discontinuities were solved. In this method, a material point can interact with material 

points within a defined neighborhood, called horizon (Hx, radius 𝛿) (Figure 2.6). The 

governing equation of peridynamics is given as:  

 

 𝜌(𝑥)�̈�(𝑥, 𝑡) =  ∫ 𝑓(𝑢(𝑥′, 𝑡) − 𝑢(𝑥, 𝑡), 𝑥′ − 𝑥)𝑑𝑉𝑥′ + 𝑏(𝑥, 𝑡)

𝐻𝑥

 (2.2) 

 

where 𝜌, u, and ü represent density, acceleration, and displacement of the material. 

The variable b(x,t) represents body forces acting on the material point x at time t. 

This integro-differential equation leads to non-singular stresses, and is mathematically 

consistent regardless of any discontinuities present in the domain, like cracks. 

 

2.4.2 How does Peridynamics relate to Mg Corrosion? 

 

Peridynamics can be used in various applications to simulate fracture, impact, 

corrosion rate, heat transfer, advection, diffusion, etc. A peridynamic model to 
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understand damage from pitting corrosion was developed by Bobaru et al. [51, 52]. The 

anodic reaction in corrosion process was modeled as a peridynamic diffusion process in 

metal-electrolyte coupled system. Thus, the autonomous evolution of metal-electrolyte 

interface was identified to evaluate sub-surface damage.  

 

 

Fig. 2.6 Interaction of a material point in continuum mechanics and peridynamics. 

 

The peridynamic modelling of adsorbed-hydrogen stress-corrosion cracking was 

done based on the adsorption-induced decohesion mechanism by Meo et al. [49]. The 

mechanical behavior of the material was found using microstructure data.  

The effect of stress-corrosion on the strength of a ZK60A Mg alloy was studied 

by Bobaru et al. [48]. The corrosion process can lead to development of cracks in the 

high stress regions. It was observed that ductility of this alloy was reduced after corrosion 

due to the microstructural properties of the diffusion corrosion layer (partially oxidized 

layer).  

Classical continuum mechanics Peridynamics 
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 Identification of stress-corrosion rate is important when it comes to biomedical 

implants. The stress-corrosion behavior of an implant changes according to a patient’s 

age and weight. Moreover, it is difficult to predict the corrosion rate of implants with 

complicated geometry, such as a femur. Hence, it is essential to model stress-corrosion 

behavior of a customized implant. Peridynamics can be effectively used to predict the 

failure or behavior of a biomedical implant. The material model in the peridynamic code 

can also accommodate the properties of the implant material.  
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CHAPTER 3 

 

SHOT PEENING OF MAGNESIUM ALLOYS AND SURFACE INTEGRITY 

CHARACTERIZATION 

 

3.1 Research Objectives 

 

 The aim of this study is to understand how shot peening (SP) process parameters 

affect part performance by influencing surface integrity. The relation between SP process 

parameters, surface integrity, and part performance is indicated in Figure 3.1. By finding 

an optimal relationship between these three categories, a favorable implant can be 

manufactured according to a patient’s age and weight. This chapter will discuss the first 

two criteria: SP process parameters and surface integrity of magnesium WE43. 

 

 

 
 

 

Fig. 3.1 Schematic showing the relationship between some SP process parameters, 

surface integrity, and performance of degradable implant. Modified from [53]. 
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3.2 Shot Peening 

 

3.2.1  Definition: Shot Peening  

 

 Shot peening is a cold working process in which the surface of a part is 

bombarded with small spherical media called shot [54]. Each particle of spherical media 

acts as a tiny peening hammer and strikes the material, thus creating several small 

indentations/dimples on the surface of the material (Figure 3.2). The surface undergoes 

tension due to the formation of indentations. The material just under the surface tries to 

restore its original shape by maintaining high compression stresses. An even layer of 

compressive residual stresses is formed due to the overlapping of dimples.  

 Shot peening increases resistance to fatigue failure, stress corrosion cracking, 

corrosion fatigue, intergranular corrosion, hydrogen-assisted cracking, etc. Apart from 

work hardening, other benefits or applications of shot peening include surface texturing 

and testing the bond of coatings. 

 

3.2.2 Residual Stresses 

 

 Residual stresses are those stresses remaining in a part after all manufacturing 

operations are completed, with no external load applied [54]. They can be tensile or 

compressive in nature. For example, in a welded joint, the heat-affected region near the 

weld may have tensile residual stresses.  Induction-hardened or surface-treated parts may 

have compressive residual stresses. The maximum compressive stresses induced due to 

shot peening are approximately half the yield strength of the shot peened material. 
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Fig 3.2 Schematic diagram of shot peening process. 

 

 

 

3.2.3  Process Variables 

 

To maintain the repeatability and preciseness of the process, all process variables 

need to be identified and controlled [2]. Some of the fundamental factors affecting the 

shot peening process are: 

• Shot density 

• Size and hardness of shot 

• Nozzle diameter and length 

• Air pressure 

• Impact angle 

• Distance between nozzle and workpiece 

 

 Shot density (also known as coverage density or coverage) refers to the 

percentage of the surface indented and is usually monitored by visual inspection. Some 

primary factors affecting shot density are the material flow rate, exposure area and time, 

and shot properties (size, composition, hardness). Coverage less than 100% indicates the 

entire surface was not peened one or more times. Surfaces are often peened to achieve 

coverage greater than 100%; however, overpeening a surface beyond what is necessary 

for an application can result in crack formation from excessive cold working. 

Shot 
peening 
media 

Nozzle 

Workpiece 

Residual stress 

(-) (+) 

Compressed Air 
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 Size and hardness of the shot refers to the characteristic length (typically average 

diameter for spherical shot) of the peening media and the resistance to localized plastic 

deformation, respectively. The shot size ranges from 100’s of microns to 2 mm. The 

hardness of the shot depends on the material and is either metal or ceramic. The most 

common materials are steel and glass.     

 The nozzle diameter refers to the size of the nozzle where peening media is 

accelerated and ejected out of nozzle towards a target. Nozzle diameter is typically one-

third of the inner diameter of the blast hose in order to achieve maximum shot 

acceleration [55]. There are two types of pressure blast nozzles: straight bore and venturi 

bore. Venturi is ideal for delivering a large, uniform blast pattern. A straight bore delivers 

a more contracted blast pattern meaning that a hot spot forms at the center of the blast 

area and tapers off at the edges in a Gaussian-like distribution. There preferred nozzle is 

application dependent. Over time, nozzles wear depending on the shot material and the 

material of the nozzle. Typically, nozzles are replaced after approximately 1/16th of an 

inch has eroded away. This normally occurs after 500 to 2000 hours of use depending on 

nozzle material. The nozzles are usually made of wear resistant ceramics, such as 

tungsten, silicon carbide, or boron. 

 The air pressure refers to the compressed air supply that acts as a medium to carry 

the shot and typically ranges from 20 to 100 psi. The air supply must be dry when using air 

peening. At 100 psi, the shot velocity can reach speeds upwards of 400 mph [56]. It is also 

important to have a lean shot to air mixture passing through the nozzle.  According to 

I’Anson, “if the shot flow rate is high and the mixture is rich, there will be more solids than 
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compressible air in the blast hose and therefore the nozzle will not be able to converge and 

compress the air resulting in a low media exit velocity and possibly unstable media flow.” 

 Impact angle refers to angle formed between the workpiece and the path of the 

shot projectile [56]. It does not solely refer to the angle of the peening gun with the 

workpiece since various nozzles, even when perpendicular to the target, have various 

angles of impingement. Higher angles of impact (flow is perpendicular to the target) will 

achieve the greatest intensity; however, angles of 80° to 85° are common so that 

rebounding media do not interfere or collide with incoming media.  

 The distance between the nozzle and workpiece influences the effectiveness of the 

peening process. If too close, concentrated severe plastic deformation may damage the 

surface or the efficiency at peening large areas is too low. If too far, the impact energy is 

insufficient, which increases the peening time needed.  

 

3.3 Experimental Procedure 

 

3.3.1  Sample Geometry and Preparation 

 

As-rolled sheets of WE43 magnesium alloy (4% Y, 2.5% Nd, 0.5% Zr, 1.2% Gd) 

used in the present work were bought from China Hunan High Broad New Material Co. 

Ltd. Samples of dimensions 80 mm × 10 mm × 1mm were cut (Figure 3.3) and polished 

with a silicon carbide paper of 800 grit size. 

 

 
Fig. 3.3 Corrosion and stress-corrosion sample geometry. 

80 mm 

10 mm 
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3.3.2  Shot Peening Procedure 

 

Magnesium samples were shot peened using a shot peening cabinet with a 

connected compressor air-line. Glass beads were used to create indentations on the 

surface instead of stainless steel beads, as the strength and hardness of magnesium is 

lower than that of steel. Plus, contamination from the steel beads could have affect 

corrosion behavior by introducing a galvanic cell. The samples were pasted on a block of 

wood with a double-sided tape during peening. A distance of 15 to 20 cm was maintained 

between the peening gun and the sample. A pressure regulator was used to adjust the 

peening pressure. The samples were peened with a static pressure of 20, 40, 60 and 80 psi 

for 20 seconds on each side.  

 

3.4 Surface Integrity 

 

Surface integrity is the surface condition of a workpiece after being modified by a 

manufacturing process. This term was coined by Michael Field and John Kahles in 1964. 

Different aspects of surface integrity include: topography characteristics (surface 

roughness) and surface layer characteristics (hardness, residual stress). The ability of an 

implant to integrate into the surrounding tissue depends on its surface integrity [57]. 

Although SP is a well-established method of surface treating metals, the influence of 

surface integrity produced by SP on the corrosion rate of that metal is less explored. 

Hence, this study investigates the surface integrity of magnesium with different peening 

parameters to further relate it with corrosion rates of the same. Characterization of 

surface topography, micro-hardness, residual stress, and microstructure has been done in 

the following sections.  
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3.4.1 Topography 

 

Surface topography is an important parameter while considering cell attachment 

on implant material. Shot peening is an efficient way to maintain cell functions and 

reduce harmful bacteria adhesion [58]. By varying shot peening pressures, surface 

parameters such as roughness can be controlled. Figure 3.4 shows the surfaces of shot 

peened samples. 

 

 

Fig. 3.4 Surfaces produced after shot peening WE43 with different peening pressures. 
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(a) Measurement Procedure 

 

Keyence laser scanning microscope VK-X200K was used to measure the 3D 

surface topography of shot peened samples (Figure 3.5). This laser scanning confocal 

microscope performs non-contact surface profile and roughness measurements. A surface 

of approximately 1.5 × 1.5 mm2 was scanned with a magnification of 5X. The arithmetic 

mean surface roughness (Ra), peak roughness (Rp), and valley roughness (Rv) were 

analyzed after scanning. 

 

(b) Surface Roughness 

 

VK-Analyzer software was used to find the roughness values. Figure 3.7(a) 

indicates the arithmetic mean values (Ra) of samples shot peened with different peening 

intensities. Figure 3.7(b) indicates the peak and valley roughness values of samples. It 

was observed that Ra increased with an increase in peening pressure. Also, Rp and Rv 

showed an increasing trend in the values with an increase in peening pressure. However, 

not much difference was observed in the peak and valley roughness of non-shot peened 

and shot peened samples. 

 

 
 

Fig 3.5 Keyence Laser Scanning Microscope VK-200K. 
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Fig. 3.6 3D topography profiles of shot peened samples. 

 

 

 
 

Fig. 3.7 (a) Arithmetic mean roughness values (Ra) and (b) Peak (Rp) and valley 

roughness (Rv). 
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(c) Coverage 

 

Coverage is defined as the percentage of area that has been impacted in a given 

time [59]. Coverage can be controlled by adjusting the time and pressure of peening. As 

seen in Figure 3.4, although the coverage of samples with 20 psi and 40 psi pressure is not 

100%, the surface area of the specimen exposed to the solution varies. In this study, the 

peening time is kept constant to maintain the same coverage and surface area of the 

samples. Another alternative is to keep the coverage of all samples the same (100%) and 

vary the peening time. Both alternatives provide sufficient repeatability to the experiments. 

 

(d) Change in Surface Area 

 

The surface area of the sample increased due to the deformation from shot 

peening (Table 3.1). The total surface area exposed to corrosion affects the current 

density (i.e. corrosion rate) of the specimen. Hence, it is essential to record this change in 

surface area to further account it in corrosion rate calculations. 

 

Table 3.1 Change in surface area due to shot peening 

 

Sample Control 20 psi 40 psi 60 psi 80 psi 

Surface Area Ratio 1 1.71 1.94 3.38 4.38 

Total surface area (cm2) 
exposed to corrosion 

5.94 10.15 11.52 20.07 26.01 

 

 

 

3.4.2 Microhardness 

 

(a) Measurement Procedure 

 

The Vickers hardness test was used to measure the surface hardness of shot 

peened magnesium WE43 with different peening intensities. A diamond in the form of a 
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pyramid base with an angle of 136° between opposite faces was used as an indenter. A 

test force (F) of 1 gf to 100 kgf was applied according to the material used. The force 

applied on the indenter created a square mark on the material. The diagonals of this 

square (d1, d2) were measured using a microscope, and the Vickers hardness was 

calculated using the following formula: 

 

 𝐻𝑉 =
2𝐹 sin

136°
2

𝑑2
 = 1.854

𝐹

𝑑2
 

(3.1) 

 

where  F = load in kgf 

           d  = arithmetic mean of the two diagonals, d1 and d2 in mm 

           HV = Vickers hardness 

In this test, a load of 300 gmf with a load time of 5 seconds was used. An objective of 

50X zoom was used to measure the diagonals in order to improve accuracy. Hence, the 

average diagonal was divided by a factor of 50 in the calculations. 

 

 
 

Fig. 3.8 Vickers hardness measurement. 
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(b)  Vickers Hardness Results 

 

The surface hardness for samples shot peened for various peening pressures is 

indicated in Figure 3.9. It was observed that the Vickers hardness number (VHN) value 

increased with an increase in peening pressure. Thus, peening the surface of the alloy 

with a higher pressure of shots increased the hardness of the surface. This suggests that 

peening a surface with higher pressure could improve the corrosion resistance of an 

implant. 

 

 
Fig. 3.9 Vickers microhardness on the surface of shot peened WE43 alloy. 

 

 

 

3.4.3 Residual Stress Characterization 

 

(a) Purpose of Measuring Residual Stress 

 

Shot peening is one of the common processes to impart residual stress in an object 

that is subjected to stress corrosion cracking. Although the shot peening process can be 

governed by monitoring peening intensity, there is no simple relation between the 

peening intensity and the depth of residual stress induced in the part. The form of the 
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residual stress-depth curve influences the sample arc height, and equal arc heights can be 

obtained by various stress distributions. Similarly, shot peening with the same peening 

intensity but different shot sizes will result in different subsurface residual stresses. The 

stress distribution by this process depends on the properties of the material used, prior 

processing, and peening parameters. The shot peening process can be efficiently 

controlled and optimized by measuring the induced subsurface residual stresses [60]. 

 

(b) Measuring Residual Stresses using XRD 

 

Mechanical (dissection techniques) and nonlinear elastic methods (ultrasonic and 

magnetic techniques) are used to determine the amount of residual stress. Both these 

methods have limitations, and thus concern the accuracy of residual stress determination. 

As mechanical methods are necessarily destructive, they cannot check repeatability. 

Major errors can occur in nonlinear elastic methods due to orientation, grain size, and 

temperature of the material. Moreover, spatial and depth resolution of these methods are 

orders of magnitude lower than that of XRD. Thus, x-ray diffraction is a reliable method 

to quantify subsurface residual stresses induced by surface treatments such as shot 

peening, laser shock peening, and burnishing [61]. 

 

(c) Principle of Measuring Residual Stress 

 

Metals are composed of several crystals oriented in different directions. If an 

external force is applied, deformation is observed in the lattice spacing (d) of each of 

these crystals. After shot peening the sample, the layers beneath the surface are 

compressed, and thus compressive residual stress is induced in the samples. X-rays 
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penetrate into the sample up to a depth of 10 microns to effectively measure the stress 

distribution near the surface. 

 

(d) Experimental Setup and Procedure 

 

The residual stress characterization was done on a Rigaku SmartLab 

Diffractometer in the Nebraska Center for Materials and Nanoscience (Figure 3.10(a)). A 

Cu Kα source with the wavelength of 1.54 Å was used to scan the sample in the 

y-direction (Figure 3.10(c)). A Soller slit of 5 mm width was used to scan a 5-mm wide 

area. Residual stresses were measured at an angle greater than 100° for reliable results. A 

general measurement indicated that the highest peak was observed at 104° (Figure 3.11).  

 

 
 

Fig. 3.10 (a) Rigaku SmartLab Diffractometer, (b) experimental diagram of X-Ray 

scanning, and (c) sample orientation. 
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(e) Analysis of Data 

 

The samples with different shot peening pressures were scanned at different ψ 

angles (angle between sample surface normal and lattice plane angle) ranging from -30° 

to +30°. A graph of 2θ versus sin2(ψ) was plotted (Figure 3.12) and the slopes of the lines 

were used to calculate the residual stress using the following formula from [61, 62]: 

 

 𝜎 = −
𝐸

2(1 + 𝜈)
. cot

2𝜃𝑜

2
.

𝜋

180
.

Δ(2𝜃)

Δ sin2 𝜓
 (3.2) 

            

where  2𝜃𝑜 = diffraction peak angle when sample is stress-free, 

 E = Young’s modulus (MPa) = 44200 MPa, 

 ν = Poisson’s ratio = 0.27, and 

 
Δ(2𝜃)

Δ sin2 𝜓
 = slope of lines in 2θ - sin2(ψ) plot. 

 

 
 

Fig. 3.11 General intensity versus 2θ scan to determine highest peak. 
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Fig. 3.12 2θ vs. sin2(ψ) plot stress analysis. 

 

 

 

(f)  Results and Conclusions 

 

As observed in Figure 3.12, the slope of lines in the 2θ - sin2(ψ) graph increased 

with an increase in peening pressure. The residual stress values were calculated using 

Equation 3.2 and the values of residual stresses for different peening pressures were 

plotted (Figure 3.13). 

 

 

Fig. 3.13 Residual stresses in shot peened magnesium WE43 alloy at peening pressures 

from 20 psi to 80 psi. 
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The calculated residual stresses increased with increasing peening pressures. 

However, the difference between the residual stress values of (a) 20 and 40 psi and (b) 60 

and 80 psi was minimal. That could indicate that the samples could be saturated with that 

peening pressure and time. Moreover, a compressive residual stress of about 20 MPa was 

observed in a non-shot peened sample. This stress is a result of polishing, cutting, and 

rolling the samples. 

 

3.4.4 Microstructure  

 

Metallographic etching was used to capture structural characteristics of a metal that 

were not evident in the as-polished conditions. The experimental setup to etch is shown is 

Figure 3.14. A solution of 10 ml hydrofluoric acid and 90 ml water was used for etching 

WE43 (ASTM E407-07). As HF etched through the glass, plastic equipment was used to 

carry it. This experiment was performed in a fume hood with a ventilation rate of 80 cfm. A 

polished sample was immersed and gently agitated in this solution for 25 to 30 seconds. 

The etched surface was then observed under an optical microscope. The grain size ranged 

from 50 to 150 µm (Figure. 3.15). 

 

 
 

Fig. 3.14 (a) Equipment for metallographic etching and (b) fume-hood to perform 

HF etching. 
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Fig. 3.15 Microstructure of WE43. 

 

 

 

3.5 Summary & Conclusions 

 

Shot peening was initiated to modify the surface integrity of magnesium WE43 

alloy. Surface topography, hardness, and residual stresses were analyzed using a laser 

scanning microscope, Vickers hardness tester, and a Rigaku x-ray diffractometer, 

respectively. It was observed that roughness and microhardness increased with increase 

in shot peening pressure on the magnesium samples. An increasing trend in the residual 

stress was also observed. It indicates that the residual stresses in the magnesium samples 

became more compressive with increasing peening pressure. 

200 µm 
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CHAPTER 4 

 

CORROSION RESISTANCE OF SHOT PEENED MAGNESIUM WE43 

 

 

4.1 Introduction 

 

It is essential to determine the corrosion rate of a magnesium alloy to relate its 

corrosion behavior to its composition, microstructure, and surface chemistry. In the case 

of orthopedic implants, corrosion behavior depends on the surface treatment or coating 

on the implant. Hence, measuring corrosion rate while analyzing the surface integrity of 

an alloy is required to find a relationship between these two important parameters.  

The corrosion rates of magnesium alloys are higher than other engineering alloys, 

as the cathodic reaction is a water reduction (producing H2). Hence, uniquely for 

magnesium alloys, different techniques have been designed for corrosion assessment.  

This chapter discusses some of the techniques used for finding corrosion rate of 

magnesium. The corrosion rate results using one of these techniques, i.e., 

potentiodynamic polarization, are discussed in this Chapter. 

 

 

4.2 Literature Review: Measurement of Corrosion Rate 

 

In vivo corrosion measurement is required for successfully designing orthopedic 

implants. Investigation of in vivo corrosion rate of different magnesium alloys has been done 

by Witte and Kaese [63]. However, the first step in the development of implants is to find the 

in vitro corrosion rate of an alloy. The difference between measurement of corrosion rates of 

magnesium alloys in vivo and in vitro conditions has been explained by Witte et al. [64]. 

 Different methods of corrosion rate assessment have been discussed in some recent 
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reviews. Kirkland et al. reviewed the methodologies used to study the corrosion of 

magnesium implant materials [65]. The fundamentals of some scanning probe techniques 

in magnesium corrosion research were discussed by Dauphin in [66]. Various experimental 

and analytical tools for corrosion testing of magnesium alloys have been discussed in [67]. 

A list of various corrosion measurement techniques is shown in Figure 4.1. 

 

 

Fig. 4.1 List of corrosion measurement techniques. Modified from [65-67]. 

 

4.2.1  Polarization Techniques 

 

Polarized experiments require special equipment such as potentiostat or 

galvanostat. They give information on the instantaneous corrosion rate of the alloy. The 
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experimental setup is relatively easy, and these techniques are used to determine the 

anodic and cathodic rate of corrosion reactions [67]. As polarization experiments are 

accelerated by applying voltage or current, they do not simulate the exact physiological 

conditions in a human body. However, they provide a good overall picture while 

comparing corrosion rates of samples peened with different intensities. 

 

(a) Potentiodyamic Polarization (PDP) 

 

 External voltage difference is applied in between the reference electrode, working 

electrode, and the counter electrode over a fixed rate. This method has gained popularity 

due to its ability of calculating anodic and cathodic kinetics easily. Tafel extrapolation or 

linear polarization resistance method (LPR) can be used to find the instantaneous corrosion 

rate of the material. This method can compare the effect of changes in the system, such as 

change in pH of solution or change in surface integrity of a specimen.  

Figure 4.2 shows the effect of change in concentration of the electrolyte (NaCl) on 

the degradation of pure magnesium [68]. Here, different concentration levels correspond 

to different pH levels of the solution.  It was observed that the current density of magnesium 

(icorr), which is directly proportional to the corrosion rate of magnesium increases as the 

concentration of solution increases. At the same time, more negative voltage is required to 

corrode the metal (V decreases). Hence, the corrosion resistance of magnesium decreases. 

This result aligns with the fact that the metal becomes more susceptible to corrosion when 

more salts are added to the solution. Thus, PDP is an easy way to compare different changes 

in the system.  
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Fig. 4.2 Polarization curves showing the effect of NaCl concentration on corrosion rate of 

commercially pure magnesium [68]. 

 

 

(b) Potentiostatic Polarization (PSP) 

 

This method uses the same basic principle as that of PDP, but the potential 

applied is fixed and the current is measured. PSP can be used to study hydrogen evolution 

during anodic polarization [69] or to measure the voltage and current while coating 

magnesium surfaces [70]. 

 

 

(c) Galvanodynamic Polarization 

 

As current and voltage are mutually independent in electrochemical reactions, 

controlling one of them and measuring another is easy. In most methods, voltage is 

controlled and current is measured with the advent of potentiostats. The reason behind this 

is that, in certain conditions multiple potentials correspond to the same current. The current 

control method can sometimes provide a multi-valued function of current. Also, current 

control method does not detect passivation.  
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Constant or variable current is applied in galvanostatic and galvanodynamic 

methods, respectively. These methods are widely used in magnesium corrosion as they are 

less complicated and since magnesium passivates at a very high pH.  

 

(d) Electrochemical Impedance Spectroscopy (EIS) 

 

EIS is one of the theoretically complex and expensive methods used for corrosion 

rate analysis. This method consists of measuring the response of an electrode to a small 

amplitude (5 to 25 mV) sinusoidal potential perturbation at different frequencies. It can 

distinguish between two or more electrochemical reactions taking place in the system 

simultaneously. EIS can provide data on capacitive behavior of the system and can identify 

diffusion-limited reactions. The kinetics of corrosion are plotted using Bode plot or Nyquist 

plot. Figure 4.3 shows a Nyquist plot pure magnesium after 24 hours of immersion in a 

0.1 M NaCl solution at low frequency. 

 

Fig 4.3 Nyquist plot of pure magnesium. 
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4.2.2  Localized Electrochemical Techniques 

 

Localized electrochemical methods are used to find the corrosion rate in cases of 

localized corrosion. Different techniques include the following: scanning vibrating 

electrode technique (SVET), scanning electrochemical microscopy (SECM), and atomic 

emission spectro-electrochemistry (AESEC). SVET uses a vibrating microprobe to detect 

the local electrochemical activity on a metal surface by measuring the local voltage drop 

in a solution.  SECM uses an ultra-microelectrode (UME) to scan the metal surface from a 

fixed height. The electrochemical response of the probe in the proximity of the metal 

surface is measured. AESEC is one of the most accurate methods for measuring localized 

corrosion. This method allows the real-time measurement of the partial elemental 

dissolution rates in the absence of polarization [66]. 

 

4.2.3  Non-Electrochemical Techniques 

 

Non-electrochemical immersion tests are commonly used for corrosion rate 

measurement of magnesium by weight loss method, hydrogen collection method, and by 

pH measurements. These methods simulate the actual physiological conditions; however, 

they take a longer time for corrosion. Many times, multiple types of immersion tests are 

combined to find an accurate corrosion rate; e.g., weight loss and hydrogen collection.  

 

(a) Mass Loss Method 

 

In this technique, the specimen weight and geometry is recorded before and after 

corrosion. Corrosion can be observed by immersing the sample into simulated 

physiological conditions; e.g., Hanks’ balanced salt solution. After exposing the sample to 
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the corrosive environment, it is necessary to clean the sample to remove corrosive products 

from the surface for measuring the weight after exposure. This is an important step to 

accurately measure the amount of degradation. For magnesium, dilute chromic acid can be 

used to clean the surface of a sample. Although mass loss method cannot give any data on 

corrosion kinetics and provides an average corrosion rate, it is considered as a more 

accurate method for corrosion rate evaluation.  

 

(b) Hydrogen Collection 

 

The cathodic reaction of magnesium is a water reduction reaction that contains 

dissolution of Mg and results in the evolution of hydrogen (Chapter 1, Section 1.1.4). 

Thus, the volume of hydrogen collected corresponds to the corrosion rate of magnesium. 

 

Fig. 4.4 Volumetric method of hydrogen collection. 

 

Hydrogen collection can be done by volumetric method or gravimetric method. 

The volumetric method is simple and commonly used for magnesium. The corroding 

sample is covered by a funnel inserted in an inverted burette (Figure 4.4). The hydrogen 

Collected hydrogen 

Mg sample 
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gas resulting from the corrosion reaction accumulated on the sample in the form of 

bubbles, which get accumulated and eventually detached from the surface. These bubbles 

are then collected inside the inverted burette. Gravimetric method is a real-time hydrogen 

collection method that measures buoyancy force resulting from the accumulation of 

hydrogen in a submerged container. The corrosion rate of magnesium is calculated from 

the volume of hydrogen gas collected for a given amount of time. 

 

(c) pH Measurements 

 

This technique assesses the corrosion rate of dissolving magnesium by chemical 

titration. As corrosion reaction proceeds, the pH of the electrolyte increases. The pH of 

electrolyte is kept constant by adding an appropriate solution as a titrant. The volume of 

titrant added corresponds to the amount of charge consumed in the reaction [71]. The 

metal hydrolysis influences pH of the solution, thus introducing measurement error.  

 

4.3 Corrosion Tests 

 

Potentiodynamic polarization technique (PDP) was used to compare the effect of 

shot peening on the corrosion rates of magnesium WE43. A conventional three-electrode 

cell was used on a Gamry 1100E Potentiostat to conduct corrosion tests. The counter 

electrode was made of graphite and the reference electrode was saturated calomel 

electrode. The electrolyte used was as a 0.5% NaCl at a temperature of 37°C. Shot peened 

samples with peening pressure of 20, 40, 60, 80 psi were polarized. The PDP scans were 

performed with the scan rate of 1 mV/s with the potential range from -3 to 1 V. Figure 4.5 

indicates the schematic and experimental setup of the polarization test. The pH of solution 
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was checked after every test and was maintained in the range of 7 to 7.8. The solution was 

discarded if pH rose beyond the limit. Each polarization test was repeated three times. 

 

 

 
 

Fig. 4.5 (a) Three-electrode potentiodynamic polarization test; (b) experimental setup of 

polarization test in the lab. 

 

 

4.4 Results: Effect of Shot Peening on Corrosion Rate of Magnesium WE43 

 

Shot peening (SP) increased the surface area of the samples with increase in 

peening pressure. Hence, the surface area exposed to sample peened with different 

intensities was different (Table 4.1). Thus, the surface area of a shot peened sample with 

80 psi intensity increased approximately 4.38 times. 

 

Table 4.1: Surface area ratios of samples with different peening pressures 

 

Sample Control 20 psi 40 psi 60 psi 80 psi 

Surface area ratio (S)  1.00  1.71  1.94  3.38  4.38 

Total surface area exposed to 
solution (cm2) 

 5.94  10.15  11.52  20.07  26.01 
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The current density was calculated as: 

 

 𝑖 =
𝐼 (instantaneous current values)

𝐴 (surface area exposed to solution)
=

𝐼

𝑆 × 𝐴0
 (4.1) 

 

where i = current density (A/cm2), I = instantaneous current density (A/cm2), A = total 

surface area exposed to the solution, S = surface area ratio, A0  = projected area of sample. 

Figure 4.6 shows the potentiodynamic polarization graph (V vs log i) of samples 

with different peening pressures considering the increase in surface area. Tafel 

extrapolation was used to find the voltage (Ecorr) and current density (icorr) for different 

peening pressures. The results of Tafel extrapolation are indicated in Table 4.2. The 

current density of samples shot peened with different peening pressure are shown in 

Figure 4.7.  

 

 
Fig. 4.6 Potentiodynamic polarization of shot peened WE43 with different 

peening pressure. 
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Fig. 4.7 Current densities of samples shot peened with different peening pressure. 

 

Table 4.2: Tafel extrapolation results of samples considering the change in surface area 

 
  Control 20 psi 40 psi 60 psi 80 psi 

Ecorr (V) -1.41 -1.39 -1.32 -1.24 -1.23 

icorr (µA/cm2) 13.1 11.9 11.2 9.5 7.6 

 

It was observed that the corrosion potential increased (more noble) with higher 

shot peening pressure, i.e., samples became less willing to corrode with higher peening 

pressure. Moreover, the current density (i.e. corrosion rate) decreased with higher 

peening pressure (Figure 4.7).  

 

4.5 Summary and Conclusion 

 

Magnesium WE43 samples were peened with different peening pressures. The 

surface integrity as well as the surface area of exposure to the solution were different due 

indentations. It is essential to consider this change in surface area of samples as it directly 

affects the corrosion rate. Potentiodynamic polarization tests were performed to observe 

the effect of shot peening on the corrosion rate of WE43. Tafel extrapolation method was 
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executed to find the corrosion potential (Ecorr) and corrosion current density (icorr) of 

samples. The results indicated that the corrosion potential increased, while the current 

density decreased with higher peening pressures. The increase in corrosion potential 

(Ecorr) implied that the samples became less willing to corrode, while the decrease in 

current density (icorr) implied that the corrosion rate of samples decreased with higher 

peening pressure. Thus, the samples became more resistant to corrosion. 
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CHAPTER 5 

 

STRESS CORROSION CRACKING BEHAVIOR OF SHOT PEENED 

MAGNESIUM WE43 

 

5.1 Introduction 

 

 Magnesium alloys are considered as potential biodegradable materials for 

temporary implantation. The implant material is required to possess adequate resistance 

to cracking or fracture in physiological environments. Stress corrosion cracking (SCC) 

and corrosion fatigue (CF) are the two important mechanisms that lead to failure in 

implants. It is required to consider the effect of external stress or fatigue on the corrosion 

behavior of the implant. At the same time, it is also required to understand the effect of 

residual stresses imparted due to shot peening on the corrosion resistance of the implant. 

In this chapter, the focus has been made on understanding the effect of external stresses 

and residual stresses on the corrosion behavior of the alloy using potentiodynamic 

polarization (PDP).  

 

5.2 Materials and Methods 

 

5.2.1 Application of Physiological Environment 

 

(a) Design of Saline Chamber 

 

A saline chamber was designed for application of corrosive environment to the 

magnesium alloy samples (Figure 5.1). The chamber was made of a square acrylic tube to 

carry corrosive fluid. A rectangular slot of 10 mm × 1 mm was designed to hold the sample 

while applying a uniform load. To make the chamber leakproof, a rubber O-ring of 1 mm 
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diameter was attached to both ends of the magnesium sample. A set of plates and screws 

was used to apply compressive force on the O-rings. Due to this compressive force, the O-

ring was deformed, thus covering the leak between sample and saline chamber. Care has 

been taken that the O-ring did not apply an external force on the sample. 

 

 
Fig. 5.1 Solid model of saline chamber on SolidWorks. 

 

(b) Simulated Body Fluids 

 

 To simulate body fluids in these experiments, Hank’s powders and Hank’s ready -

made solution is generally used. A white residue was observed in the solution after 

keeping samples of WE43 for a longer duration (5 to 7 hours). To avoid any kind of 

errors, 0.5 % NaCl was used in these experiments. 

 

(c) Maintain Temperature and pH of the Solution 

 

To simulate body conditions, the temperature of solution was maintained to 

37 degrees Celsius. As the pH of the human body remains within a range of 7.35 to 7.45, 
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pH higher than 8.0 is considered harmful for the body. For these experiments pH was 

kept in a range of 7.2 to 8.0. 

 

5.2.2  Application of Stress 

 

(a) Maximum Permissible Stress 

 

The yield stress of WE43 is 160 MPa. Thus, the total stress applied to the 

specimen is required to be lower than the yield stress to be in the elastic region. 

The average weight of an American woman over the age 20 and height 5 feet 3 

inches is approximately 160 lbs (711.7 N). Considering the entire weight of the body is 

subjected to the implant during the gait. As the cross-sectional area of the sample was 

10 mm2, the stress induced in implant was 71.17 MPa (~72 MPa). Considering a factor of 

safety of 0.1, the total stress of 80 MPa was applied. As the stress imparted was lower 

than the yield stress of the material, all experiments were done based on this stress value. 

Thus, maximum permissible stress in the specimen was σmax = 80 MPa. 

 

 

(b) Design of Stress-Frame 

 

A custom-made frame was designed to apply uniaxial stress (Figure 5.2). This 

type of spring-loaded stress frame has been adapted to stress-corrosion testing as it is 

simple, compact, and easy-to-use. Force was applied by tightening the nut on one side of 

the frame and is determined by measuring the deformation of a tension spring on the 

other side of the frame. The nuts and bolts used were metric, i.e., one rotation of nut 

corresponded to 1 mm displacement on the bolt. 
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Fig 5.2 Solid model of tensile stress frame on SolidWorks. 

 

In these experiments, a spring made of OTCS (oil tempered chrome silicon) with 

a spring constant (k) of 200 N/mm (free length = 25.4 mm, outer diameter = 18.5 mm, no. 

of coils = 3) was used. The nut was rotated 4 times to apply a stress of 80 MPa. 

 

 

5.3 Polarization Tests to Measure Stress-Corrosion Behavior 

 

5.3.1 Experiment Arrangement 

 

To compare the corrosion rates of a surface treated sample with a plain sample, 

potentiodynamic polarization (PDP) technique was used. A conventional three-electrode 

cell was used on Gamry 1100E Potentiostat to conduct potentiodynamic polarization 

tests. The counter electrode was made of graphite and the reference electrode was 

saturated calomel electrode. The electrolyte used was 0.5% NaCl at a temperature of 

37°C. All specimens were cleaned in distilled water and acetone at room temperature 

before the polarization tests to avoid contamination. The schematic diagram and the 

experimental setup is shown in Figure 5.3.  

 

Compression spring 
F = kx 

4 turns 
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Fig. 5.3 Potentiodynamic polarization arrangement of stressed WE43 samples. 

 

5.3.2 Procedure to find Corrosion Rate: 

 

Shot peened samples with peening pressures of control, 20, 40, 60 and 80 psi 

were polarized to analyze the effect of external stress and residual stresses on the 

samples. The surface roughness, surface residual stresses, microstructure, and topography 

of shot peened samples with different intensities were discussed in Chapter 3. To analyze 

the effect of peening pressures on the stress corrosion behavior of the alloy, an external 

stress of 80 MPa was applied to the peened samples along with the corrosive 

environment. To analyze the effect of external stresses, different external stresses were 

applied to shot peened samples with 80 psi peening pressure. Tafel extrapolation was 

used to find the current density and potential of corrosion. 

 

5.3.3 Effect of Peening Pressure on the Stress Corrosion Behavior of WE43 

 

Samples shot peened with peening pressures 0, 20, 40, 60 and 80 psi were 

inserted in the saline chamber and the stress frame. The surface area of samples exposed 
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to the solution was different for different peening intensities. The change in surface area 

for each sample was accounted in the polarization curves. External stress of 80 MPa was 

applied to the samples to incorporate stress corrosion cracking. Figure 5.4 indicates the 

potentiodynamic polarization curves for samples shot peened with different peening 

pressures. Tafel extrapolation was used to calculate corrosion potentials and current 

densities. Table 5.1 shows the results of Tafel extrapolation results from polarization 

data. The current density of samples shot peened with different peening pressure is shown 

in Figure 5.5. 

 

 

 
Fig 5.4 Potentiodynamic polarization curves for different shot peening pressures. 

 

 

 

Table 5.1 Tafel extrapolation results for different peening pressures 

 Control 20 psi 40 psi 60 psi 80 psi 

Ecorr (V) -1.65 -1.58 -1.56 -1.53 -1.49 

icorr (µA/cm2) 33 24 22 18 11 
Area (cm2) 5.94 10.17 11.52 20.09 26.05 
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Fig 5.5 Current density, icorr at different shot peening pressures. 

 

It was observed that the corrosion potential (Ecorr) increased (more noble) with 

higher shot peening pressure, i.e., samples became less willing to corrode with higher 

peening pressure. At the same time, the current density (i.e. corrosion rate) decreased 

with higher peening pressure (Figure 5.5).  

 

5.3.4 Effect of External Stress on the Stress-Corrosion Behavior of WE43 at 

80 psi Peening Pressure: 

 

 Different external stresses (0, 40, 80 MPa) were applied to samples shot peened 

with 80 psi peening pressure. Since the peening pressure of samples was the same, the 

surface area exposed to the samples was considered the same. Figure 5.6 shows the 

polarization curves of samples peened with 80 psi pressure at different external pressures. 

The Tafel extrapolation results are indicated in Table 5.2 
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Fig 5.6 Potentiodynamic polarization curves for different external stresses. 

 

 

 

Table 5.2 Tafel extrapolation results for different external stresses 

 0 MPa 40 MPa 80 MPa 

Ecorr (V) -1.22 -1.35 -1.49 

icorr (µA/mm2) 7.6 9.2 11.3 

 

 

Fig 5.7 Current density, icorr at different external stresses. 
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 The corrosion potential (Ecorr) of the samples decreased as the external stress 

applied to sample increased (samples became more active), i.e., samples became more 

willing to corrode. The current density (icorr) increased with higher external stress 

(Figure 5.7), i.e., the corrosion rate increased with higher external stress. 

 

5.4 Summary and Conclusions 

 

 Shot peening of a biodegradable WE43 alloy has been initiated to modify the 

surface integrity and to measure the resulting instantaneous stress corrosion behavior. To 

mimic human physiological loading conditions, a customized stress frame and a 

corrosion chamber were built. Results indicated that the corrosion resistance of the alloy 

increased as the pressure of shot peening increased. It was also observed that external 

stress on the WE43 samples caused a negative shift of corrosion potential and enhanced 

the corrosion activity as demonstrated through the potentiodynamic polarization results. 

 

5.5 How Experimental Data can be used to Model SCC? 

 

 In the assessment of corrosion rate for implants, the effect of elastic stress is 

required to be considered to calculate the part life. The synergistic effect of corrosion and 

elastic stress on structures could significantly affect the accuracy during part life 

assessment. Corrosion models have been designed to extrapolate the corrosion results and 

find the life of the implant.  Various corrosion models such as power function, 

exponential function, Weibull function can be used to calculate the life of an implant 

using potentiodynamic polarization results [72]. 
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CHAPTER 6 

 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

6.1 Summary and Conclusions  

 

Shot peening of biodegradable WE43 was initiated to modify the surface integrity 

and to measure the resulting instantaneous stress-corrosion behavior by potentiodynamic 

polarization (PDP). A customized stress frame and a corrosion chamber was designed and 

built to mimic human physiological loading conditions. Results indicated that the corrosion 

resistance of the alloy increased as the shot peening pressure increased and was inversely 

proportional to the applied load. 

 

6.1.1 Effect of Stress on Corrosion of Magnesium WE43 

 

To design a medical device for load bearing applications, it is important to consider 

the effect of external stress on the corrosion rate of the material. While it is predicted that 

the corrosion rate would increase in presence of stress, there are very few studies that 

observe the effect of stress on corrosion. Results from this study indicated that the stress-

corrosion rate was typically 2 to 3 times higher than the corrosion rate (Figure 6.1).  

 

6.1.2 Linking Shot Peening – Surface Integrity – Stress Corrosion 

 

One of the objectives of this study was to find a relation between process (shot 

peening) – property (surface integrity) – performance (stress-corrosion rate), i.e., to find 

the correlation between surface integrity parameters and stress-corrosion rate of 

magnesium. Surface integrity parameters such as surface roughness (Ra), microhardness 
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(VHN), and compressive residual stresses were taken into consideration. It was observed 

that surface roughness, microhardness, and compressive residual stresses increased with 

higher peening pressure (Figure 6.2), while the stress-corrosion rate decreased with 

higher peening pressure (Figure 6.1). 

 

 

Fig. 6.1 Effect of stress on samples shot peened with different peening pressures. 

 

Fig. 6.2 Effect of shot peening pressure on surface integrity parameters. 
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6.1.3 Understanding Corrosion Rate of Magnesium after Shot Peening 

 

It is necessary to compare corrosion rate of a peened and an unpeened sample to 

understand the effect of peening on corrosion behavior. According to Faraday’s law, the 

corrosion rate of magnesium is given by: 

 

 𝑟 =
𝑚

𝑡𝐴
 (6.1) 

 

 

where, m: mass lost during corrosion, t: corrosion time, A: actual surface area exposed to 

the solution (not the projected surface area). The subscript “p” and “up” refers to peened 

and unpeened, respectively. 

If time (t) for which both the samples are corroded is kept constant, the corrosion 

rate only depends on the mass of material lost and surface area exposed to the sample. 

The surface area of peened sample was higher than the surface area of the unpeened 

sample (Ap > Aup). To understand how mass loss (m) affects the corrosion rate, the 

following three cases were considered: 

1) When mp > mup: Although the peened sample corrodes more and loses more amount 

of mass, the corrosion rate of a peened sample could still be lower than the unpeened 

sample if the ratio of (m/A)p < (m/A)up. 

2) When mp < mup: Although the peened sample corrodes less and loses less mass, the 

corrosion rate still depends on the ratio of (m/A). Since the ratio of (m/A) is 

uncertain, it is difficult to compare the corrosion rates in this case. 

3) When mp = mup, rp < rup: If equal amounts of mass are lost between a peened and 

unpeened sample, the corrosion rate of a peened sample will be lower than the 
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corrosion rate of an unpeened sample because (m/A)p < (m/A)up. That is, Ap is greater 

than Aup.  

Thus, it is essential to find the accurate mass loss of peened and unpeened magnesium to 

effectively compare the corrosion rates. These results indicate there is a distinction 

between the volume of material corroded and the rate at which it has corroded. Care 

should be taken when investigating the effect of surface treatments on the corrosion rate 

to distinguish between corrosion rate and volume (i.e., mass lost). 

 

 

6.2 Recommendations 

 

6.2.1 Hydrogen Evolution Setup for Stress Corrosion Behavior Measurement 

 

Potentiodynamic polarization (PDP) was used in this study to find the corrosion 

resistance of WE43. However, PDP gives only a comparative method to assess the initial 

corrosion behavior. Hydrogen evolution test can provide a more accurate measure of the 

long term corrosion behavior. An analogy to compare PDP and immersion is the 

difference between looking at a picture versus watching a movie. PDP provides a 

snapshot (i.e., picture) of the instantaneous corrosion rate. Immersion is analogous to 

watching the movie in order to understand mass of material lost over time.  

A hydrogen evolution test setup has been designed to find the corrosion rate of shot 

peened alloy in the absence of polarization. This stress corrosion setup will simulate more 

realistic physiological conditions. The setup consists of a magnesium sample stressed with 

the help of a tensile stress frame. A portion of magnesium sample is enveloped by the 

saline chamber to apply a corrosive environment. The assembly of stress frame, 

magnesium sample, and saline chamber is further sealed in an airtight container. The 
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airtight container is sealed at its point of contact with the saline chamber to avoid the 

damage of stress frame. The assembly of an airtight container (with saline chamber inside) 

is immersed in a glass tank of 0.5% NaCl solution. An inverted graduated beaker is placed 

over the saline chamber to collect hydrogen gas bubbles from the corrosion reaction of 

magnesium. The solution is covered with plastic balls or plastic wrap to avoid evaporation 

of solution. The solution inside the saline chamber is circulated with the help of a peristaltic 

pump. The solution is kept at a temperature of 37°C. 

 

 

 
 

Fig. 6.1 Hydrogen evolution method arrangement for stress corrosion experiments. 

 

 

 

6.2.2 Identify the Effect of Individual Surface Integrity Parameters on Corrosion 

 

Surface integrity parameters, such as topography, microhardness, residual stresses 

contribute to the corrosion behavior of magnesium. In this study, it was observed that the 

combined effect of these parameters influenced the corrosion rate and the stress-corrosion 

rate of magnesium. However, the effect of individual surface integrity parameters on the 
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corrosion of magnesium is still unknown. It is necessary to identify the effect of 

individual surface integrity parameters to control the corrosion rate more efficiently. 

 

6.2.3 Corrosion Fatigue Resistance 

 

In this study, external tensile stress was applied to magnesium samples using a 

stress frame to simulate stress in an implant. However, both tensile and compressive 

forces are applied on an implant in physiological conditions. The type of stress imparted 

on a bone implant could be fatigue or a function of stress (e.g., gait cycle). It is required 

to understand the effect of such complex stresses on the corrosion behavior of the alloy. 

Hence, the next step to this research could be analyzing the effect of fatigue on corrosion 

resistance of WE43. 

 

6.2.4 Burnishing or Laser Shock Peening as a Surface Treatment 

 

 In this study, shot peening was used to induce surface residual stresses on the 

alloy. The peening pressure was measured from the pressure regulator on the shot 

peening machine, thus leading to inaccuracies in the pressure reading. Moreover, the shot 

flow during peening was found inconsistent, which could result in development of 

uneven residual stresses on the surface of the alloy. Due to these few drawbacks of shot 

peening, the manufacturing process of the part could have more errors. Thus, use of 

burnishing or laser shot peening could be considered for surface treating the alloy in 

future. 
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